Bank Liquidity and the Cost of Debt

Sam Miller and Rhiannon Sowerbutts

Columbia and TCH Liquidity Conference

February 2018
Our Paper’s Contribution

- Little research on link between bank liquidity and funding costs.
- Build a model where more liquid firms have lower funding costs.
- Find initial empirical evidence for this relationship.
- This effect may imply higher optimal liquidity requirements.
Our Paper’s Contribution

- Little research on link between bank liquidity and funding costs.
- Build a model where more liquid firms have lower funding costs.
- Find initial empirical evidence for this relationship.
- This effect may imply higher optimal liquidity requirements.
Our Paper’s Contribution

- Little research on link between bank liquidity and funding costs.
- Build a model where more liquid firms have lower funding costs.
- Find initial empirical evidence for this relationship.
- This effect may imply higher optimal liquidity requirements.
Our Paper’s Contribution

- Little research on link between bank liquidity and funding costs.
- Build a model where more liquid firms have lower funding costs.
- Find initial empirical evidence for this relationship.
- This effect may imply higher optimal liquidity requirements.
Policy question: what is the economic cost of higher liquidity requirements?

- Inspiration comes from capital requirements’ "M-M" offsets.
- There’s some opportunity cost for firms - liquid assets yield less.
- *but* if their liquidity risk is reduced then the risk premium on their funding should fall.
- M-M offsets doubled our optimal capital estimate.
Motivation

- Policy question: what is the economic cost of higher liquidity requirements?
- Inspiration comes from capital requirements’ "M-M" offsets.
 - There’s some opportunity cost for firms - liquid assets yield less.
 - *but* if their liquidity risk is reduced then the risk premium on their funding should fall.
 - M-M offsets doubled our optimal capital estimate.
Policy question: what is the economic cost of higher liquidity requirements?

Inspiration comes from capital requirements’ "M-M" offsets.

There’s some opportunity cost for firms - liquid assets yield less.

but if their liquidity risk is reduced then the risk premium on their funding should fall.

M-M offsets doubled our optimal capital estimate.
Policy question: what is the economic cost of higher liquidity requirements?

Inspiration comes from capital requirements’ "M-M" offsets.

There’s some opportunity cost for firms - liquid assets yield less.

but if their liquidity risk is reduced then the risk premium on their funding should fall.

M-M offsets doubled our optimal capital estimate.
Motivation

- Policy question: what is the economic cost of higher liquidity requirements?
- Inspiration comes from capital requirements’ "M-M" offsets.
- There’s some opportunity cost for firms - liquid assets yield less.
- *but* if their liquidity risk is reduced then the risk premium on their funding should fall.
- M-M offsets doubled our optimal capital estimate.
The model set up

- **Three periods:** t=0, 1, 2
- Two types of agent: a bank and a continuum of investors, normalised to size 1.
- The bank is funded by fixed amounts of debt (D) and equity (E).
- The bank owns the equity, investors own the debt. $E = 1 - D$.

Miller, Sowerbutts
Bank Liquidity and the Cost of Debt
Nov 2017
The model set up

- Three periods: t=0, 1, 2
- Two types of agent: a bank and a continuum of investors, normalised to size 1.
 - The bank is funded by fixed amounts of debt (D) and equity (E).
 - The bank owns the equity, investors own the debt. \(E = 1 - D \).
The model set up

- Three periods: $t=0, 1, 2$
- Two types of agent: a bank and a continuum of investors, normalised to size 1.
- The bank is funded by fixed amounts of debt (D) and equity (E).
- The bank owns the equity, investors own the debt. $E = 1 - D$.

The model set up

- Three periods: $t=0, 1, 2$
- Two types of agent: a bank and a continuum of investors, normalised to size 1.
- The bank is funded by fixed amounts of debt (D) and equity (E).
- The bank owns the equity, investors own the debt. $E = 1 - D$.
The model set up - period 0

- The bank can choose between cash (c) and loans (1-c) in period 0.
- Loans have a random yield R in period 2.
- The bank can repo loans to raise up to $\theta R(1 - c)$ in period 1, where $\theta < 1$
- Cash yields 1 with certainty in both periods.
The model set up - period 0

- The bank can choose between cash (c) and loans (1-c) in period 0.
- Loans have a random yield \(R \) in period 2.
 - The bank can repo loans to raise up to \(\theta R(1 - c) \) in period 1, where \(\theta < 1 \)
- Cash yields 1 with certainty in both periods.
The model set up - period 0

- The bank can choose between cash (c) and loans (1-c) in period 0.
- Loans have a random yield R in period 2.
- The bank can repo loans to raise up to $\theta R (1 - c)$ in period 1, where $\theta < 1$
- Cash yields 1 with certainty in both periods.
The model set up - period 0

- The bank can choose between cash (c) and loans (1-c) in period 0.
- Loans have a random yield R in period 2.
- The bank can repo loans to raise up to $\theta R(1 - c)$ in period 1, where $\theta < 1$
- Cash yields 1 with certainty in both periods.
The model set up - period 0

- Investors are risk neutral and can each buy D units of debt in period 0.
- The bank offers the following contract to investors:
 - Investors have outside option utility $U > 1$.
 - The bank chooses $r_D > U$ to satisfy a participation constraint.
The model set up - period 0

- Investors are risk neutral and can each buy D units of debt in period 0.
- The bank offers the following contract to investors:
 - Investors have outside option utility $U > 1$.
 - The bank chooses $r_D > U$ to satisfy a participation constraint.

<table>
<thead>
<tr>
<th>Action</th>
<th>Bank fails</th>
<th>Bank Survives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdraw in period 1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Don’t withdraw</td>
<td>0</td>
<td>r_D</td>
</tr>
</tbody>
</table>
Investors are risk neutral and can each buy D units of debt in period 0.
The bank offers the following contract to investors:
Investors have outside option utility $U > 1$.
The bank chooses $r_D > U$ to satisfy a participation constraint.

<table>
<thead>
<tr>
<th>Action</th>
<th>Bank fails</th>
<th>Bank Survives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdraw in period 1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Don’t withdraw</td>
<td>0</td>
<td>r_D</td>
</tr>
</tbody>
</table>
The model set up - period 0

- Investors are risk neutral and can each buy D units of debt in period 0.
- The bank offers the following contract to investors:
- Investors have outside option utility $U > 1$.
- The bank chooses $r_D > U$ to satisfy a participation constraint.

<table>
<thead>
<tr>
<th>Action</th>
<th>Bank fails</th>
<th>Bank Survives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdraw in period 1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Don’t withdraw</td>
<td>0</td>
<td>r_D</td>
</tr>
</tbody>
</table>
In period 1, each investor receive a private signal $x_i = R + e_i$, where e_i is $N(0, \sigma^2)$.

Some proportion of investors $W \in [0, 1]$ decide whether to withdraw based on their signal.

The bank will fail in period 1 if $\theta R (1 - c) + c < WD$.

If the bank fails then runners receive 1, other investors receive 0.

If the bank survives to period 2 it repays its remaining investors and the repo, rest is profit.
In period 1, each investor receive a private signal $x_i = R + e_i$, where e_i is $N(0, \sigma^2)$.

Some proportion of investors $W \in [0, 1]$ decide whether to withdraw based on their signal.

The bank will fail in period 1 if $\theta R(1 - c) + c < WD$.

If the bank fails then runners receive 1, other investors receive 0.

If the bank survives to period 2 it repays its remaining investors and the repo, rest is profit.
Model set up - period 1 and 2

- In period 1, each investor receive a private signal \(x_i = R + e_i \), where \(e_i \) is \(N(0, \sigma^2) \).
- Some proportion of investors \(W \in [0, 1] \) decide whether to withdraw based on their signal.
- The bank will fail in period 1 if \(\theta R (1 - c) + c < WD \).
- If the bank fails then runners receive 1, other investors receive 0.
- If the bank survives to period 2 it repays its remaining investors and the repo, rest is profit.
In period 1, each investor receive a private signal \(x_i = R + e_i \), where \(e_i \) is \(N(0, \sigma^2) \).

Some proportion of investors \(W \in [0, 1] \) decide whether to withdraw based on their signal.

The bank will fail in period 1 if \(\theta R(1 - c) + c < WD \).

If the bank fails then runners receive 1, other investors receive 0.

If the bank survives to period 2 it repays its remaining investors and the repo, rest is profit.
In period 1, each investor receive a private signal $x_i = R + e_i$, where e_i is $N(0, \sigma^2)$.

Some proportion of investors $W \in [0, 1]$ decide whether to withdraw based on their signal.

The bank will fail in period 1 if $\theta R (1 - c) + c < WD$.

If the bank fails then runners receive 1, other investors receive 0.

If the bank survives to period 2 it repays its remaining investors and the repo, rest is profit.
Solving the model

Solve backwards:

1. Find the optimal run strategy for investors, given the bank’s choices of c and r_D.
2. Given the run strategy, find the minimum r_D in period 0 necessary to participate.
3. Given r_D and the investor’s run strategy, find the bank’s optimal cash choice.
Solving the model

Solve backwards:

1. Find the optimal run strategy for investors, given the bank’s choices of c and r_D.
2. Given the run strategy, find the minimum r_D in period 0 necessary to participate.
3. Given r_D and the investor’s run strategy, find the bank’s optimal cash choice.
Solving the model

Solve backwards:

1. Find the optimal run strategy for investors, given the bank’s choices of \(c \) and \(r_D \).
2. Given the run strategy, find the minimum \(r_D \) in period 0 necessary to participate.
3. Given \(r_D \) and the investor’s run strategy, find the bank’s optimal cash choice.
Solve backwards:

1. Find the optimal run strategy for investors, given the bank’s choices of c and r_D.
2. Given the run strategy, find the minimum r_D in period 0 necessary to participate.
3. Given r_D and the investor’s run strategy, find the bank’s optimal cash choice.

Equilibrium consists of bank choice c, r_D and investor strategy.
Run strategy

- In period 1, investors know the insolvency point of the bank R_0 is given by $R_0(1 - c) + c = Dr_D$.
- For signals $x_i < R_0$ it is strictly dominant for investors to run because they expect insolvency.
- However there will also be some point R^0 such that $\theta R^0(1 - c) + c = D$ where the bank is immune to runs.
- For signals $x_i > R^0$ it is strictly dominant for the investors to stay, because the firm cannot fail.
In period 1, investors know the insolvency point of the bank R_0 is given by $R_0(1 - c) + c = Dr_D$.

For signals $x_i < R_0$ it is strictly dominant for investors to run because they expect insolvency.

However there will also be some point R^0 such that $\theta R^0(1 - c) + c = D$ where the bank is immune to runs.

For signals $x_i > R^0$ it is strictly dominant for the investors to stay, because the firm cannot fail.
Run strategy

- In period 1, investors know the insolvency point of the bank R_0 is given by $R_0(1 - c) + c = Dr_D$.
- For signals $x_i < R_0$ it is strictly dominant for investors to run because they expect insolvency.
- However there will also be some point R^0 such that $\theta R^0(1 - c) + c = D$ where the bank is immune to runs.
- For signals $x_i > R^0$ it is strictly dominant for the investors to stay, because the firm cannot fail.
Run strategy

- In period 1, investors know the insolvency point of the bank R_0 is given by $R_0(1 - c) + c = Dr_D$.
- For signals $x_i < R_0$ it is strictly dominant for investors to run because they expect insolvency.
- However there will also be some point R^0 such that $\theta R^0 (1 - c) + c = D$ where the bank is immune to runs.
- For signals $x_i > R^0$ it is strictly dominant for the investors to stay, because the firm cannot fail.
Run strategy

- In period 1, investors know the insolvency point of the bank R_0 is given by $R_0(1 - c) + c = D r_D$.
- For signals $x_i < R_0$ it is strictly dominant for investors to run because they expect insolvency.
- However there will also be some point R^0 such that $\theta R^0(1 - c) + c = D$ where the bank is immune to runs.
- For signals $x_i > R^0$ it is strictly dominant for the investors to stay, because the firm cannot fail.
Unique equilibrium "switching point" R^*: investors run if they receive signals below and vice versa.

- The frequency of bank runs is given by $P(R < R^*)$.
- Generally we have $R^* > R_0$ i.e. solvent banks will suffer runs, even if all investors believe they are solvent.
Unique equilibrium "switching point" R^*: investors run if they receive signals below and vice versa.

The frequency of bank runs is given by $P(R < R^*)$.

Generally we have $R^* > R_0$ i.e. solvent banks will suffer runs, even if all investors believe they are solvent.
Unique equilibrium "switching point" R^*: investors run if they receive signals below and vice versa.

The frequency of bank runs is given by $P(R < R^*)$.

Generally we have $R^* > R_0$ i.e. solvent banks will suffer runs, even if all investors believe they are solvent.
Comparative static - more cash

- We have a unique equilibrium "switching point" R^*: investors run if they receive signals below and vice versa.
- The frequency of bank runs is given by $P(R < R^*)$.
- Holding more cash reduces R^* and the frequency of bank runs.
Equilibrium funding cost

Figure: Well capitalised bank

Figure: Badly capitalised bank
Empirical specification

We want to test our model’s prediction that funding costs decline with cash choice.

\[
\text{cost of funding}_{it} = \alpha_i + \beta_1 \frac{\text{equity}}{\text{total assets}_{it}} + \beta_2 \frac{\text{liquid assets}}{\text{total assets}_{it}} \\
+ \beta_3 \frac{\text{short term debt}}{\text{total assets}_{it}} + \gamma Z_t + \epsilon_{it} \tag{1}
\]

- Data in logs
- Balance sheet data: Fed FRY9C disclosures
- Controls Z_t for VIX index and US Treasury yield
- CDS spreads: Bloomberg
- Time periods: quarterly data 2009-2016
- 6 firms: JPMorgan, Goldman, Morgan Stanley, Bank of America, Citigroup, Wells Fargo
Correlations

- JPMorgan Chase & Co.
- Bank of America Corporation
- Citigroup Inc.
- The Goldman Sachs Group, Inc.
- Wells Fargo & Company
- Morgan Stanley
Initial results

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) FE only</th>
<th>(2) FE + BS Variables</th>
<th>(3) FE + BS Variables + Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>liq asset ratio</td>
<td>-0.465** (-3.086)</td>
<td>-0.389*** (-4.251)</td>
<td>-0.243*** (-4.276)</td>
</tr>
<tr>
<td>leverage ratio</td>
<td>-1.813*** (-4.947)</td>
<td>-1.115*** (-6.007)</td>
<td></td>
</tr>
<tr>
<td>ST debt ratio</td>
<td>0.0398 (0.915)</td>
<td>0.0130 (0.609)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>5.178*** (34.47)</td>
<td>8.704*** (11.80)</td>
<td>6.921*** (14.15)</td>
</tr>
<tr>
<td>Observations</td>
<td>198</td>
<td>198</td>
<td>198</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.181</td>
<td>0.301</td>
<td>0.706</td>
</tr>
<tr>
<td>Number of firmid</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Fixed Effects</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Controls</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

Robust t-statistics in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Magnitude of effect

• 1% change in liquidity associated with .24% change in CDS.
 • NOT percentage points.
 • If bank with LAR of 10% raises to 11%, that's a 10% increase.
 • If CDS spread starts at 100bps, predicted decline to 97.6bps.
1% change in liquidity associated with .24% change in CDS.

NOT percentage points.

- If bank with LAR of 10% raises to 11%, that's a 10% increase.
- If CDS spread starts at 100bps, predicted decline to 97.6bps.
Magnitude of effect

- 1% change in liquidity associated with .24% change in CDS.
- NOT percentage points.
- If bank with LAR of 10% raises to 11%, that’s a 10% increase.
- If CDS spread starts at 100bps, predicted decline to 97.6bps.
Magnitude of effect

- 1% change in liquidity associated with .24% change in CDS.
- NOT percentage points.
- If bank with LAR of 10% raises to 11%, that’s a 10% increase.
- If CDS spread starts at 100bps, predicted decline to 97.6bps.
Robustness

Robust to:

- Dropping each year out the sample
- Dropping each firm out the sample
- Specification changes e.g. broader liquidity measure, deeper lags
Robustness

Robust to:
- Dropping each year out the sample
- Dropping each firm out the sample
- Specification changes e.g. broader liquidity measure, deeper lags
Robustness

Robust to:

- Dropping each year out the sample
- Dropping each firm out the sample
- Specification changes e.g. broader liquidity measure, deeper lags
Policy question: social cost of higher liquidity requirements?

- Built a model where holding more cash reduces funding costs.
- BUT model is very simple and numeric simulations could be improved.
- Provided some evidence for an association between liquidity and CDS spreads.
- BUT sample is small and US only - need more widespread liquidity disclosures or different measure of funding costs.
Summary and further work

- Policy question: social cost of higher liquidity requirements?
- Built a model where holding more cash reduces funding costs.
 - BUT model is very simple and numeric simulations could be improved.
 - Provided some evidence for an association between liquidity and CDS spreads.
 - BUT sample is small and US only - need more widespread liquidity disclosures or different measure of funding costs.
Policy question: social cost of higher liquidity requirements?

Built a model where holding more cash reduces funding costs.

BUT model is very simple and numeric simulations could be improved.

Provided some evidence for an association between liquidity and CDS spreads.

BUT sample is small and US only - need more widespread liquidity disclosures or different measure of funding costs.
Policy question: social cost of higher liquidity requirements?
Built a model where holding more cash reduces funding costs.
BUT model is very simple and numeric simulations could be improved.
Provided some evidence for an association between liquidity and CDS spreads.
BUT sample is small and US only - need more widespread liquidity disclosures or different measure of funding costs.
Policy question: social cost of higher liquidity requirements?
Built a model where holding more cash reduces funding costs.
BUT model is very simple and numeric simulations could be improved.
Provided some evidence for an association between liquidity and CDS spreads.
BUT sample is small and US only - need more widespread liquidity disclosures or different measure of funding costs.